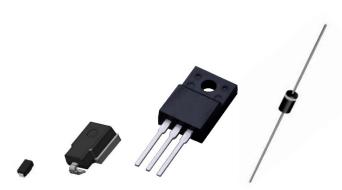


Working Together for a Greener Society

Future of Power Electronics and the Earth

Diode Selection Guide

Outline

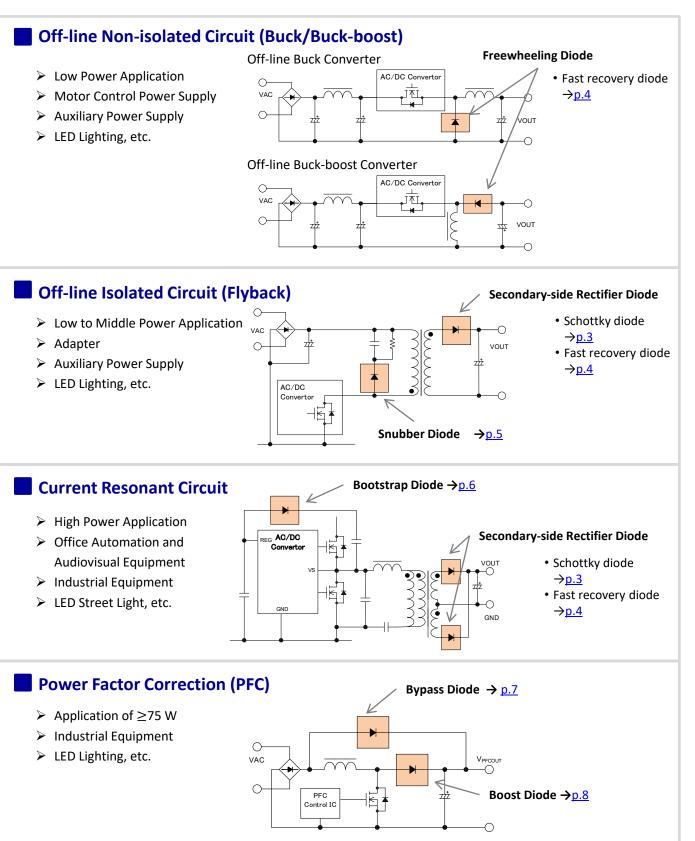

- Off-line Non-isolated Circuit (Buck/Buck-boost)
 - ✓ Freewheeling Diode

■ Off-line Isolated Circuit (Flyback)

- ✓ Secondary-side Rectifier Diode
- ✓ Auxiliary Switch Diode for Snubber (SARS Series)

Current Resonant Circuit

- ✓ Bootstrap Diode
- ✓ Secondary-side Rectifier Diode
- PFC Circuit
 - ✓ Bypass Diode
 - ✓ Boost Diode


All information in this guide is as of the date of publication. Please make sure that you are using the latest version of the guide. If you need more product information, please refer to our data sheets. <u>https://www.sanken-ele.co.jp/en</u>

SGE0006_Oct. 18, 2024

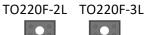
Diodes by Application

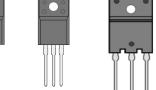
This guide introduces Sanken's diodes used for peripheral power supply circuits. Please visit our website to learn more about our diode products.

Secondary-side Rectifier Diodes

Schottky Diodes

Features


- ➤ V_{RM} = 60 V to 150 V
- I_F = 1 A to 45 A
- \succ V_F \leq 1.1 V



V _{RM}	I _{F(AV)}	Part Number	Package	V _F (max.)	I _R	H • I _R
	1 A	SJPB-D4		0.55 V	0.1 mA	35 mA
40 V	2 A	SJPB-H4	SJP	0.55 V	0.2 mA	70 mA
	3 A	SJPB-L4		0.55 V	0.3 mA	100 mA
	1 A	SJPB-D6		0.68 V	0.1 mA	30 mA
	2 A	SJPB-H6	SJP	0.69 V	0.2 mA	55 mA
	3 A	SJPB-L6		0.70 V	0.3 mA	70 mA
60 V	6 A	FMB-G16L	TO220F-2L	0.72 V	5.0 mA	200 mA
	15 A	FMW-2156		0.70 V	5.0 mA	175 mA
	20.4	FMB-2306	- TO220F-3L	0.70 V	8.0 mA	400 mA
	30 A	FMW-4306	TO3PF-3L	0.70 V	3.0 mA	350 mA
	20 A	FMEN-2208	TO220F-3L	0.76 V	0.2 mA	100 mA
80 V	30 A	FMEN-2308	10220F-3L	0.765 V	0.3 mA	150 mA
	45 A	SZ-10EF	SZ-10	0.82 V	0.05 mA	50 mA
90 V	1 A	SJPB-D9	SJP	0.85 V	0.1 mA	30 mA
90 V	2 A	SJPB-H9	375	0.85 V	0.2 mA	55 mA
	10 A	FMES-21010	TO2205 21	0.85 V	0.035 mA	18 mA
	20 A	FMES-22010	- TO220F-3L	0.85 V	0.07 mA	35 mA
100 V	20.4	FMES-23010	TO220F-3L	0.85 V	0.10 mA	50 mA
	30 A	FMEN-430A	TO3PF-3L	0.85 V	0.3 mA	150 mA
	40 A	FMES-24010	TO220F-3L	0.85 V	0.15 mA	75 mA
	3 A	SJPE-L15	CID	0.95 V	0.06 mA	15 mA
	5 A	SJPE-T15	- SJP	0.95 V	0.1 mA	25 mA
	10.4	FMEN-210B	TO220F-3L	0.92 V	0.1 mA	25 mA
150 V	10 A	SPET-21015		0.98 V	0.05 mA	25 mA
	15 A	SPET-21515	TO252-2L	0.98 V	0.07 mA	35 mA
	20 A	FMEN-220B	TO 2205 21	0.95 V	0.2 mA	50 mA
	30 A	FME-230B	- TO220F-3L	0.95 V	0.3 mA	75 mA

Freewheeling Diodes, Secondary-side Rectifier Diodes

Fast Recovery Diodes

Features	Packages				TO220F-2L	TO220F-3L	TO3PF-3L
Fast Recovery Characteristic t _{rr} ≤ 100 ns	s Axial	SJP	TO252-2L	TO220S			•••
> $V_{RM} = 200 V \text{ to } 600 V$ > $I_F = 0.5 \text{ A to } 20 \text{ A}$							

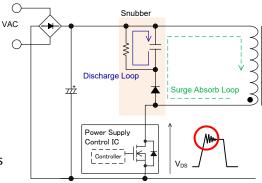
V _{RM}	l _{F(AVG)}	Part Number	Package	V _F	$t_{rr} (I_F : I_R = 1 : 1)$
	1 A	SJPL-D2	SJP	0.98 V	50 ns
	1.5 A	SJPX-F2	SJP	0.98 V	30 ns
	2 A	SJPL-H2	SJP	0.98 V	50 ns
	3 A	SJPL-L2	SJP	0.98 V	50 ns
	5.0 A	FML-G12S	TO220F-2L	0.98 V	40 ns
	5.677	FMX-12S	TO220F-3L	0.98 V	30 ns
		MPL-102S	TO220S	0.98 V	40 ns
200 V		SPXS-2102S	TO252	1.25 V	30 ns
	10 A	FMX-22S	TO220F-3L	0.98 V	30 ns
		FMX-12SL	TO220F-3L	1.25 V	30 ns
		FMX-G22S	TO220F-2L	0.98 V	30 ns
	15 A	FMX-22SL	TO220F-3L	0.98 V	30 ns
		FMX-4202S	TO3PF-3L	0.98 V	30 ns
	20 A	FMXA-2202S	TO220F-3L	1.20 V	25 ns
		MP2-202S	TO220S-2L	0.90 V	50 ns
	2 A	SJPX-H3	SJP	1.30 V	30 ns
	5 A	FML-G13S	TO220F-2L	1.30 V	50 ns
300 V	10 A	FMX-23S	TO220F-3L	1.30 V	30 ns
300 V		FMXA-2203S	TO220F-3L	1.30 V	25 ns
	20 A	FMXA-4203S	TO3PF-3L	1.30 V	25 ns
		FMX-4203S	TO3PF-3L	1.30 V	30 ns
	0.7 A	AG01	Axial (ф2.4×2.9L/ф0.57)	1.80 V	100 ns
		EG01	Axial (ф2.7×5.0L/ф0.6)	2.00 V	100 ns
	0.8 A	EG1	Axial (φ2.7×5.0L/φ0.78)	1.80 V	100 ns
400 V	1.5 A	SJPL-F4	SJP	1.30 V	50 ns
	3 A	SJPL-L4	SJP	1.30 V	50 ns
	10 A	FMXA-1104S	TO220F-2L	1.50 V	25 ns
	20 A	FMD-4204S	TO3PF-3L	1.40 V	50 ns
F00.V/	1 A	SJPD-D5	SJP	1.40 V	40 ns
500 V	3 A	SJPD-L5	SJP	1.40 V	50 ns
	0.5.4	AG01A	Axial (ф2.4×2.9L/ф0.57)	1.80 V	100 ns
	0.5 A	EG01A	Axial (ф2.7×5.0L/ф0.6)	2.00 V	100 ns
	0.6 A	EG1A	Axial (φ2.7×5.0L/φ0.78)	2.00 V	100 ns
	2.1	SJPL-H6	SJP	1.50 V	50 ns
600 V	2 A	SJPX-H6	SJP	1.50 V	30 ns
		SPNS-1106S	TO252-2L	1.30 V	100 ns
	46.5	FMNS-1106S	TO220F-2L	1.30 V	100 ns
	10 A	FMX-1106S	TO220F-2L	1.60 V	30 ns
		FMXA-1106S	TO220F-2L	1.98 V	28 ns

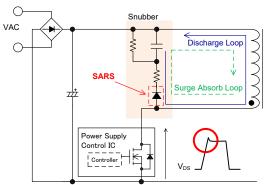
Low Noise, High Circuit Efficiency

Diodes for Snubber Circuit (SARS Series)

The SARS series are snubber diodes that allow your application to have lower noise and higher circuit efficiency.

Part	V		I _{FSM} 50 Hz	V _F		t _{rr}	Dackage
Number	V _{RM}	^I F (AVG)	Half Wave	V _F (max.)	I _F	$I_{F} : I_{R} = 1 : 1$	Package
SARS01	800 V	1.2 A	110 A	0.92 V	1.2 A	2 µs to 18 µs	Axial (ф2.7×5.0L/ф0.6)
SARS05	800 V	1.0 A	30 A	1.05 V	1.0 A	2 µs to 19 µs	SJP


The following comparisons explain how flyback circuit operations differ when the snubber circuit uses a fast recovery diode or a SARS series device.


FRD

When the power MOSFET turns off, a surge current flows through the surge absorb loop and is then absorbed by the capacitor. The discharge loop discharges an electrical charge stored in the capacitor. This discharged energy is not transferred to the secondary side and thus turned into power dissipation. During the capacitor discharge, the recovery current of the diode flows into the power MOSFET. Using a fast recovery diode with a short t_{rr} is necessary to prevent the power MOSFET from any damage. However, a shorter t_{rr} means a shorter diode conduction period. To suppress ringing noise, enhanced input filtering must be implemented for FRD snubber circuits.

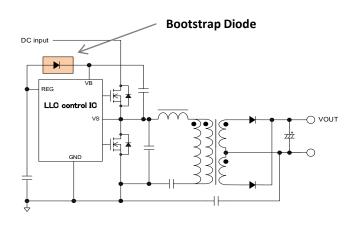
SARS Series

When the power MOSFET turns off, a surge current flows through the surge absorb loop and is then absorbed by the capacitor. The discharge loop discharges an electrical charge stored in the capacitor within a recovery time of the SARS series. This discharged energy is transferred to the secondary side, resulting in circuit efficiency improvement. During the capacitor discharge, the recovery current of the SARS series instantaneously flows into the power MOSFET. Adding a resistor in series with the SARS series is necessary to prevent the power MOSFET from any damage. Having a longer t_{rr}, the SARS series can suppress ringing noise. This enables not only avoiding power MOSFET damage but also simplifying input filtering (patented).

Check our SARS series video on YouTube! https://youtu.be/gRUQcjVdLag

Current Resonant Circuit

Bootstrap Diodes


SanKen

A bootstrap diode is generally used for a high-side driver circuit.

Since a recovery current flows into the diode used according to the switching frequency of the driver IC, use a diode with fast recovery characteristics (t_{rr}) as a bootstrap diode. For bootstrap diodes, therefore, select a fast recovery diode designed with considerations in the voltage applied to a power MOSFET and the high-side sink current.

Features	Packages				
Fast Recovery Characteristics	Axial	SJP	T0252-2L	TO220S	TO220F-2L
$t_{rr} \le 100 \text{ ns}$ > $V_{RM} = 600 \text{ V to } 1000 \text{ V}$ > $I_F = 0.5 \text{ A to } 10 \text{ A}$	ø				

V _{RM}	l _{F(AVG)}	Part Number	Package	V _F	$t_{rr} (I_F : I_R = 1 : 1)$
	0.5 A	AG01A	Axial (φ2.4×2.9L/φ0.57)	1.8 V	100 ns
	0.5 A	EG01A	Axial (ф2.7×5.0L/ф0.6)	2.0 V	100 ns
	0.6 A	EG1A	Axial (φ2.7×5.0L/φ0.78)	2.0 V	100 ns
	2 A	SJPL-H6	SJP	1.5 V	50 ns
600 V	2 A	SJPX-H6	SJP	1.5 V	30 ns
		SPNS-1106S	TO252-2L	1.3 V	100 ns
		FMNS-1106S	TO220F-2L	1.3 V	100 ns
	10 A	FMX-1106S	TO220F-2L	1.6 V	30 ns
		FMXA-1106S	TO220F-2L	1.98 V	28 ns
1000 V	0.5 A	EG01C	Axial (ф2.7×5.0L/ф0.6)	3.3 V	100 ns

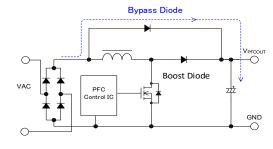
PFC Circuit

Bypass Diodes

For bypass diodes used in PFC circuits, select a diode that can withstand an instantaneous large current and has a forward voltage lower than that of a boost diode.

Features

- ▶ V_F ≤ 1.05 V
- ➢ V_{RM} = 600 V to 1000 V
- I_{FSM} = 35 A to 80 A


V _{RM}	I _{F(AVG)}	Part Number	Package	V _F (max.)	I _{FSM} 50 Hz Half Wave
	1 A	AM01A	Axial (ф2.4×2.9L/ф0.57)	0.98 V	35 A
600 V	1 A	EM01A	Axial (ф2.7×5.0L/ф0.6)	0.97 V	45 A
000 V	1 A	EM1A	Axial (ф2.7×5.0L/ф0.78)	0.97 V	45 A
	1.2 A	EM2A	Axial (ф2.7×5.0L/ф0.78)	0.92 V	80 A
800 V	1 A	EM1B	Axial (ф2.7×5.0L/ф0.78)	1.05 V	35 A
800 V	1.2 A	EM2B	Axial (ф2.7×5.0L/ф0.78)	0.92 V	80 A
1000 \/	1 A	EM01C	Axial (ф2.7×5.0L/ф0.6)	1.05 V	35 A
1000 V	1 A	EM1C	Axial (ф2.7×5.0L/ф0.78)	1.05 V	35 A

Bypass Diode Functions

A bypass diode has two major functions.

Protect Power MOSFETs and Rectifier Diodes from Inrush Current

If the reactor (inductance) becomes saturated due to an inrush current, a large current flows into the rectifier diode used and may thus destroy it. If the power MOSFET turns on during the inductance saturation, it may also be destroyed. To protect the power MOSFET and rectifier diode, bypass inrush currents to a bypass diode so that the inductance saturation can be suppressed.

Protect Bridge Diodes from Lightning Surge

In case of a lightning surge applied to the PFC circuit, the bridge diode used may cause dielectric breakdown. To prevent such event, a bypass diode is commonly used to bypass the lightning surge energy to an electrolytic capacitor.

Bypass Diode Electrical Characteristics

To have inrush currents or lightning surge currents flow through a bypass diode, the forward voltage of the bypass diode must be lower than that of a boost diode.

In addition, in a state where a PFC output voltage is higher than an input voltage, the bypass diode remains turned off. This requires no consideration of t_{rr}.

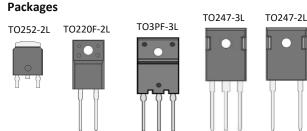
PFC Circuit

Boost Diodes

A fast recovery diode is commonly used as a boost diode in a PFC circuit. You can reduce loss in your application by selecting a fast recovery diode suitable for each PFC operation mode.

PFC Operation Modes

	Discontinuous Conduction Mode (DCM)	Critical Conduction Mode (CRM)	Continuous Conduction Mode (CCM)		
Advantages	 Low switching noise No recovery loss in a bo 	oost diode	 Low peak current of a power MOSFET Low input current ripple Low noise in normal mode 		
Disadvantages	 High peak current of a power MOSFET High input current ripple High noise in normal mode 		High switching noiseHigh recovery loss in a boost diode		


Fast Recovery Diodes for DCM, CRM

In these modes, almost no recovery current flows into a boost diode at power MOSFET turn-on because there is zero current through the boost diode. This allows you to put forward voltages before recovery characteristics in diode selection.

Therefore, select a diode with a low forward voltage.

Fast Recovery Diodes for CCM

In this mode, a recovery current flows into a boost diode at power MOSFET turn-on. Therefore, select a diode with a short t_{rr} .

V _{RM}	I _{F(AVG)}	Part Number	Package	V _F	$t_{rr} (I_F : I_R = 1 : 1)$
		SPNS-1106S	TO252-2L	1.3 V	100 ns
	10 A	FMNS-1106S	TO220F-2L	1.3 V	100 ns
	IUA	FMX-1106S	TO220F-2L	1.6 V	30 ns
		FMXA-1106S	TO220F-2L	1.98 V	28 ns
	15 A	FMN-1156S	TO220F-2L	1.3 V	100 ns
		FMD-4206S	TO3PF-3L	1.7 V	50 ns
	20 A	FMLD-4206S	TO3PF-3L	1.7 V	50 ns
		FMXR-1206S	TO220F-2L	2.5 V	60 ns
600 V		CTNS-6306S	TO247-3L	1.3 V	100 ns
	30 A	FMN-4306S	TO3PF-3L	1.3 V	100 ns
	50 A	CTXS-5306S	TO247-2L	1.7 V	35 ns
		CTXR-5306S	TO247-2L	2.5 V	70 ns
	40 A	CTXR-5406S	TO247-2L	2.5 V	75 ns
		CTNS-6606S	TO247-3L	1.3 V	150 ns
		CTXS-6606S	TO247-3L	1.7 V	35 ns
	60 A	CTXS-5606S	TO247-2L	1.7 V	50 ns
		CTXR-5606S	TO247-2L	2.5 V	80 ns

Introduction to SPICE Modes

We have SPICE models for LTspice® or OrCAD®PSpice® available.

30 🗸 件表示	《 < 1 > » (1~27件表示/27件中)				للا الح الح	シロード(Excel)		
🔥 フィルタ	絞り込みたい値を入力 ?				フィルタ 絞り込みたい値を入力 ?			列表示/非表示 ~
PSpice	LTspice	品名		ステイタス?	内容	製品概要		
219	219	FMEN-210A	📕 🛒 在庫	量産中	ショットキダイオード	100V/10A		
28	200	FMES-21010	🙏 🛒 在庫	量産中	ショットキダイオード	100V/10A		
219	210	FMES-22010	📕 🛒 在庫	量産中	ショットキダイオード	100V/20A		
210	200	FMES-23010	📕 🛒 在庫	量産中	ショットキダイオード	100V/30A		
219	218	FMES-24010	📕 🛒 在庫	量産中	ショットキダイオード	100V/40A		
219	-	SJPA-D3	🙏 🛒 在庫	量産中	ショットキダイオード	30V/1A		
219	-	SJPA-L3	📕 🛒 在庫	量産中	ショットキダイオード	30V/3A		
ZIP	_	SJPB-D4	📕 🛒 在庫	量産中	ショットキダイオード	40V/1A		
219	-	SJPB-D6	📕 🛒 在庫	量産中	ショットキダイオード	1A, 60V		
219	-	SJPB-D9	📕 🛒 在庫	量産中	ショットキダイオード	1A, 90V		
219	-	SJPB-H4	📕 🛒 在庫	量産中	ショットキダイオード	2A, 40V		
210	-	SJPB-H6	📕 🛒 在庫	量産中	ショットキダイオード	2A, 60V		
219	_	SJPB-H9	📕 🛒 在庫	量産中	ショットキダイオード	2A, 90V		
219	-	SJPB-L4	📕 🛒 在庫	量産中	ショットキダイオード	3A, 40V		
219	_	SJPB-L6	📕 🛒 在庫	量産中	ショットキダイオード	3A, 60V		

SPICE Model Downloads Page

Important Notes

- •All data, illustrations, graphs, tables and any other information included in this document (the "Information") as to Sanken's products listed herein (the "Sanken Products") are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use.
- The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the "Specific Applications"). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein.
- •In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken's official website in relation to derating.
 No anti-radioactive ray design has been adopted for the Sanken Products.
- •The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products.
- •Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information.
- •No information in this document can be transcribed or copied or both without Sanken's prior written consent.
- •Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken.
- Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).
- •In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.
- •You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations.
- •Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken's distribution network.
- •Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the Information.
- •Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products.
- •All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).