

2012年11月26日

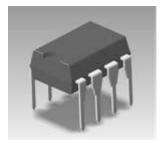
概要

LC5560 シリーズは、パワーMOSFET と制御 IC を 1 パッケージに内蔵した、LEDドライバ IC です。

入力に電解コンデンサを使用しない 1 コンバータ方式で、 軽負荷動作時でも高調波規制(IEC61000-3-2 class C)が対 応可能です。

制御は、平均電流制御により高力率、かつ擬似共振動作により高効率・低ノイズを実現できます。

充実した保護機能により構成部品の少ない、コストパフォーマンスの高い電源システムを容易に構成できます。


特長

- 電流調光機能内蔵
- すン幅制御回路内蔵 (平均電流制御により高力率が可能)
- ソフトスタート機能内蔵 (電源起動時のパワーMOSFET、2 次側整流ダイオード のストレス低減)
- バイアスアシスト機能内蔵 (起動性の向上、動作時の Vcc 電圧低下を抑制、Vcc コンデンサの低容量化、制御回路電源をセラミックコン デンサでバックアップが可能)
- ●リーディング・エッジ・ブランキング機能内蔵
- 最大オン時間制限回路内蔵
- 保護機能

過電流保護(OCP)パルス・バイ・	パルス
過電圧保護(OVP)	ラッチ
過負荷保護(OLP)	ラッチ
過熱保護(TSD)	ラッチ

パッケージ

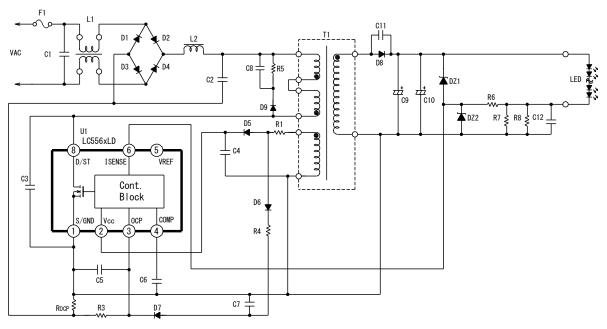
パッケージ名:DIP8

主要スペック

● 制御 IC 部

製品名	PWM 動作周波数 f _{OSC} (TYP)	最大 ON 時間 t _{ON(MAX)} (TYP)
LC5565LD	72kHz	9.3µs
LC5566LD	60kHz	11.2µs

● 出力 MOSFET、出力電力 POUT


	MOS	SFET	P _{OUT} *			
製品名	V_{DSS}	R _{DS(ON)}	AC230V	AC85∼		
	(MIN)	(MAX)	AC230 V	265V		
LC5565LD	650V	3.95Ω	13W	10W		
LC5566LD	650V	1.9Ω	20W	16W		

* 上記出力電力は熱定格にもとづいています。最大出力電力は、熱定格の120%~140%程度まで出力可能です。ただし、 出力電圧が低い場合やトランス設計時のON Dutyの設定により出力電力の制限を受けることがあります

アプリケーション

- LED 照明機器
- LED 電球

応用回路例

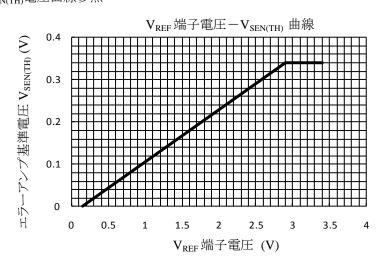
2012年11月26日

絶対最大定格(1) (Ta=25°C)

項目	端子	記 号	測定条件	規格値	単位	備考
ドレイン電流 ⁽²⁾	8 – 1	Ť	シングルパルス	2.5	A	LC5565LD
	8 – 1	I_{DPEAK}	シングルパルス	4.0	A	LC5566LD
アバランシェ・エネルギ 耐量 ⁽³⁾	8 – 1	E_{AS}	シングルパルス V _{DD} =99V,L=20mH I _{LPEAK} = 2.0A	47	mJ	LC5565LD
アパリンシェ・エ 小ル 竹 脚 重	0-1	L _{AS}	シングルパルス V _{DD} =99V,L=20mH I _{LPEAK} =2.7A	86	mJ	LC5566LD
制御部電源電圧	2 - 1	V_{CC}		35	V	
O C P 端 子 電 圧	3 – 1	V_{OCP}		-2.0~+5.0	V	
C O M P 端 子 電 圧	4 – 1	V_{COMP}		− 0.3∼+7.0	V	
V _{R E F} 端 子 電 圧	5 – 1	V_{REF}		− 0.3∼+5.0	V	
ISENSE 端子電圧	6 – 1	V_{SEN}		− 0.3∼+5.0	V	
MOSFET 部許容損失 (4)	8 – 1	P_{D1}		0.97	W	基板実装時 基板サイズ 15mm×15mm
動 作 周 囲 温 度	_	T_{OP}		− 55∼+125	°C	
保 存 温 度		T_{stg}		− 55∼+125	°C	
チャネル温度		T_{ch}		+150	°C	

⁽¹⁾ 電流値の極性は IC を基準として、シンクが(+)、ソースが(-)と規定します

⁽²⁾ MOS FET Safe Operating Area (SOA)曲線参照
(3) MOS FET T_{ch}—E_{AS}曲線参照
(4) MOS FET Ta—P_{DI} 曲線参照


2012年11月26日

制御部電気的特性⁽¹⁾ (特記のない場合の条件 Ta=25°C、V_{CC}=20V)

9 LI V//KII	1a=23 C, V((C-20 V)						
項 目 端子 記 号		規 格 値			出任	備考		
畑丁	記 方	MIN	TYP	MAX	中位	1		
電源起動動作								
2 - 1	$V_{\text{CC(ON)}}$	13.8	15.1	17.3	V			
2 – 1	V _{CC(OFF)}	8.4	9.4	10.7	V			
2 – 1	$I_{CC(ON)}$	_	_	4.7	mA			
8 - 1	V _{STARTUP}	18	21	24	V			
2 - 1	I _{CC(STARTUP)}	-8.5	-4.0	-1.5	mA	$V_{CC}=13V$		
2 - 1	V _{CC(BIAS)}	9.5	11.0	12.5	V			
8 _ 1	fore	60	72	84	kHz	LC5565LD		
0-1	TOSC	50	60	70	kHz	LC5566LD		
8 – 1	toverve	8.0	9.3	11.2	μs	LC5565LD		
0 1	ON(MAX)	9.0	11.2	13.4	μs	LC5566LD		
4 – 1	V _{COMP(MIN)}	0.30	0.55	0.80	V			
6 – 1	$V_{\text{SEN(TH)}}$	0.312	0.335	0.358	V			
4 – 1	I _{SEN(SOURCE)}	-22	-14	-6	μΑ			
4 – 1	I _{SEN(SINK)}	6	14	22	μΑ			
3 – 1	t _{ON(LEB)}	_	600	_	ns			
3 – 1	$V_{BD(TH1)}$	0.14	0.24	0.34	V			
3 – 1	$V_{\mathrm{BD}(\mathrm{TH2})}$	0.11	0.16	0.21	V			
	,							
3 – 1	V _{OCP}	-0.66	-0.60	-0.54	V			
3 – 1	I_{OCP}	-120	-40	-10	μΑ			
3 – 1	$V_{BD(OVP)}$	2.2	2.6	3.0	V			
4 – 1	$V_{\text{COMP(OLP)}}$	4.1	4.5	4.9	V			
6 – 1	V _{SEN(OVP)}	1.6	2.0					
2 – 1	V _{CC(OVP)}	28.5	31.5	34.0	V			
_	$T_{j(TSD)}$	135	_	_	°C			
	端子 2-1 2-1 2-1 2-1 8-1 2-1 8-1 4-1 6-1 4-1 3-1 3-1 3-1 3-1 3-1 4-1 6-1 2-1	##子 記号 2-1 V _{CC(ON)} 2-1 V _{CC(OFF)} 2-1 I _{CC(ON)} 8-1 V _{STARTUP} 2-1 I _{CC(STARTUP)} 2-1 V _{CC(BIAS)} 8-1 f _{OSC} 8-1 t _{ON(MAX)} 4-1 V _{COMP(MIN)} 6-1 V _{SEN(TH)} 4-1 I _{SEN(SOURCE)} 4-1 I _{SEN(SOURCE)} 4-1 I _{SEN(SINK)} 3-1 t _{ON(LEB)} 3-1 V _{BD(TH1)} 3-1 V _{BD(TH2)} 3-1 V _{OCP} 3-1 I _{OCP} 3-1 V _{COMP(OLP)} 6-1 V _{SEN(OVP)} 2-1 V _{CC(OVP)} - T _{j(TSD)}	対抗子 計一子 MIN 2 - 1	端子 記号 規格値 MIN TYP 2-1 V _{CC(OFF)} 8.4 9.4 2-1 I _{CC(ON)} 8-1 V _{STARTUP} 18 21 2-1 I _{CC(STARTUP)} -8.5 -4.0 2-1 V _{CC(BIAS)} 9.5 11.0 8-1 f _{OSC} 60 72 50 60 8-1 t _{ON(MAX)} 9.0 11.2 4-1 V _{COMP(MIN)} 0.30 0.55 6-1 V _{SEN(TH)} 0.312 0.335 4-1 I _{SEN(SOURCE)} -22 -14 4-1 I _{SEN(SINK)} 6 14 3-1 t _{ON(LEB)} - 600 3-1 V _{BD(TH1)} 0.14 0.24 3-1 V _{BD(TH2)} 0.11 0.16 3-1 V _{COMP(OLP)} 4.1 4.5 6-1 V _{SEN(OVP)} 1.6 2.0 2-1 V _{CC(OVP)} 28.5 31.5 - T _{j(TSD)} 135 -	##子 記号 規格値 MIN TYP MAX	端子 記号 規格値 単位 MIN TYP MAX 単位 MAX MAX		

⁽¹⁾ 電流値の極性は IC を基準として、シンクが(+)、ソースが(-)と規定

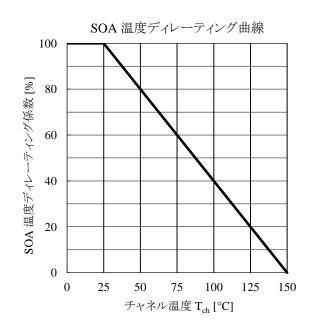
 $^{^{(3)}}$ V_{REF} 端子電圧 $-V_{SEN(TH)}$ 電圧曲線参照

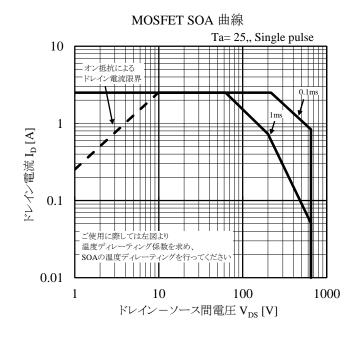
⁽²⁾ 個々の製品においては、 $V_{\text{CC(BIAS)}} > V_{\text{CC(OFF)}}$ の関係が成り立つ

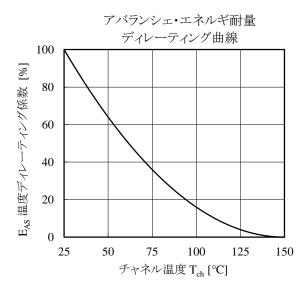
2012年11月26日

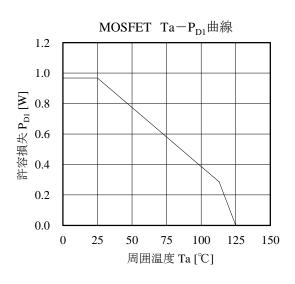
MOSFET 部電気的特性⁽¹⁾ (Ta=25°C)

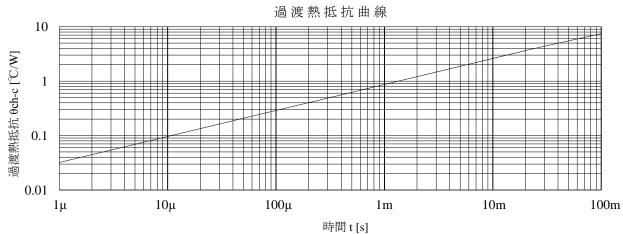
項目		出フ	扫 中 .	規 格 値		単位	備考					
4	場 日			端子 記号 —		TYP	MAX	早 业	畑 与			
ドレイン・ソ	ース間電	圧	8 – 1	V_{DSS}	650	_		V				
ドレイン	漏れ電	流	8 – 1	I_{DSS}	_	_	300	μΑ				
O N	抵	抗	8 – 1	D	_	_	3.95	Ω	LC5565LD			
O N	157	1)1	1/1	0 – 1	0 - 1	0-1	$8-1$ $R_{DS(ON)}$	_	_	1.9	Ω	LC5566LD
スイッチン	<i>й. а.</i>	λ.	8 – 1	4		_	250	ns	LC5565LD			
	2 · 2 1	4	8 – 1	t _f	_	_	400	ns	LC5566LD			
熱	抵	抗 (2)		Δ	_	_	42	°C/W	LC5565LD			
<i>統</i>	丛	1) [_	$\theta_{\mathrm{ch-c}}$	_	_	35.5	°C/W	LC5566LD			

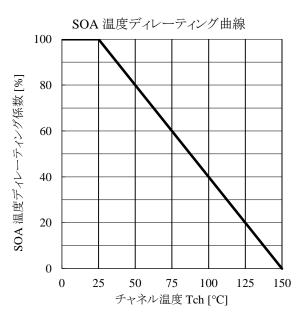

⁽¹⁾ 電流値の極性は IC を基準として、シンクが(+)、ソースが(-)と規定します

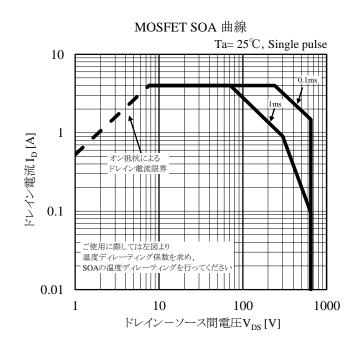

 $^{^{(2)}}$ MOSFET のチャネルとケース間の熱抵抗。ケース温度 $T_{\rm C}$ は捺印面中央部の温度で規定

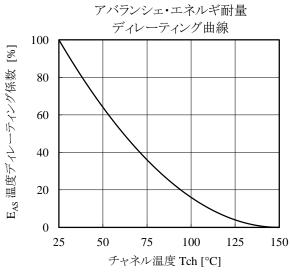


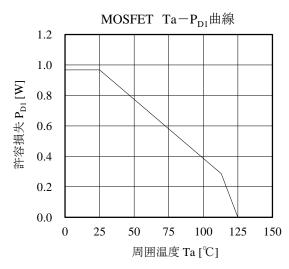

2012年11月26日

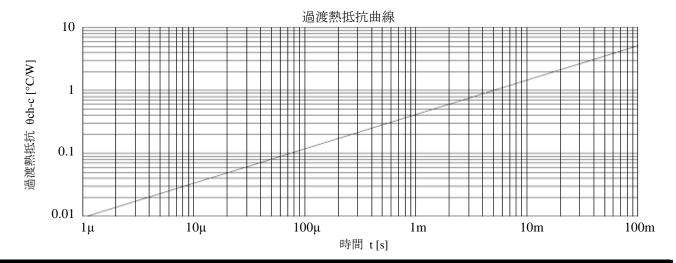

LC5565LD MOSFET 代表特性

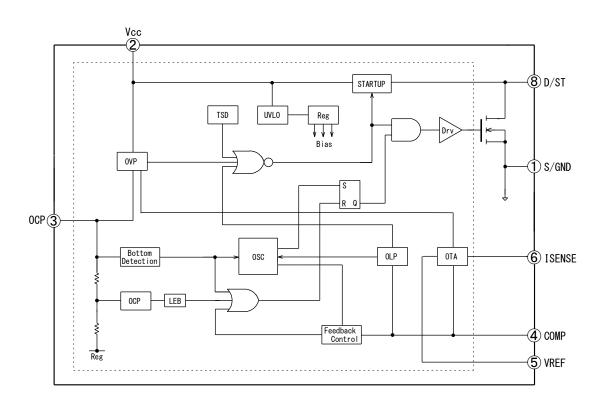


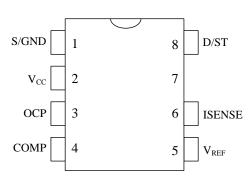





SanKen 2012年11月26日


LC5566LD MOSFET 代表特性





ブロックダイアグラム

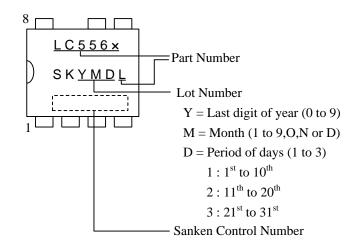
各端子機能



端子番号	記号	機能
1	S/GND	MOSFET ソース/制御部 GND
2	V _{CC}	制御回路電源入力/過電圧保護信号入力
3	OCP	過電流保護/擬似共振信号入力 /過電圧保護信号入力
4	COMP	フィードバック位相補償
5	V_{REF}	調光信号入力
6	ISENSE	フィードバック電流検出/過電圧保護信号入力
7	_	(抜きピン)
8	D/ST	MOSFETドレイン/起動電流入力


応用回路例

非絶縁構成の LED 照明用電源回路例


外形寸法 DIP8

NOTES:

- 1) 単位:mm
- 2) Pb フリー品(RoHS 対応)

捺印仕様

使用上の注意

保管環境、特性検査上の取り扱い方法によっては信頼度を損なう要因となるので、注意事項に留意してください。

保管上の注意事項

- ●保管環境は、常温(5~35°C)、常湿(40~75%)中が望ましく、高温多湿やの場所、温度や湿度の変化が大きな場所を避けてください。
- 腐食性ガスなどの有毒ガスが発生しない、塵埃の少ない場所で、直射日光を避けて保管してください
- 長期保管したものは、使用前にはんだ付け性やリードの錆などについて再点検してください

特性検査、取り扱い上の注意事項

● 受入検査などで特性検査を行う場合は、測定器からのサージ電圧の印加、端子間ショートや誤接続などに十分注意 してください。また定格以上の測定は避けてください

放熱用シリコーングリースを使用する場合の注意事項

- ◆ 本製品を放熱板に取り付け、シリコーングリースを使用する場合は、均一に薄く塗布してください。必要以上に塗布すると、無理な応力を加えます
- 揮発性の放熱用シリコーングリースは、長時間経過するとシリコーングリースにヒビ割れが生じ、放熱効果が悪化します。 ちょう度の小さい(固い)放熱用シリコーングリースは、ビス止め時にモールド樹脂クラックの原因となります 弊社では、寿命に影響を与えない下記の放熱用シリコーングリースを推奨しております

品名	メーカー名
G746	信越化学工業(株)
YG6260	モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
SC102	東レ・ダウコーニング(株)

はんだ付け方法

- はんだ付けをする場合は、下記条件以内で、できるだけ短時間で作業してください
 - •260 ± 5 °C $10 \pm 1 \text{ s}$ (フロー、2 回)
 - ・380±10°C 3.5±0.5s (はんだごて、1回)

はんだ付けは製品本体より 1.5mm のところまでとします

静電気破壊防止のための取扱注意

- 製品を取り扱う場合は、人体アースを取ってください。人体アースはリストストラップなどを用い、感電防止のため、1MΩの抵抗を人体に近い所へ入れてください
- 製品を取り扱う作業台は、導電性のテーブルマットやフロアマットなどを敷き、アースを取ってください
- カーブトレーサーなどの測定器を使う場合、測定器もアースを取ってください
- はんだ付けをする場合、はんだごてやディップ槽のリーク電圧が、製品に印加するのを防ぐため、はんだごての先や ディップ槽のアースを取ってください
- 製品を入れる容器は、弊社出荷時の容器を用いるか、導電性容器やアルミ箔などで、静電対策をしてください

注意書き

- ◆本資料に記載している内容は、改良などにより予告なく変更することがあります。 ご使用の際には、最新の情報であることを確認してください。
- 本書に記載している動作例および回路例は、使用上の参考として示したもので、これらに起因する弊社もしくは第三者の工業所有権、知的所有権、その他の権利の侵害問題について弊社は一切責任を負いません。
- 弊社は品質、信頼性の向上に努めていますが、半導体製品では、ある確率での欠陥、故障の発生は避けられません。製品の故障により結果として、人身事故、火災事故、社会的な損害などが発生しないよう、使用者の責任において、装置やシステム上で十分な安全設計および確認を行ってください。
- 本書に記載している製品は、一般電子機器(家電製品、事務機器、通信端末機器、計測機器など)に使用することを意図しております。
 - 高い信頼性を要求する装置(輸送機器とその制御装置、交通信号制御装置、防災・防火装置、各種安全装置など)への使用を検討、および一般電子機器であっても長寿命を要求する場合は、必ず弊社販売窓口へ相談してください。
 - 極めて高い信頼性を要求する装置(航空宇宙機器、原子力制御、生命維持のための医療機器など)には、弊社の文書による合意がない限り使用しないでください。
- 弊社の製品を使用、またはこれを使用した各種装置を設計する場合、定格値に対するディレーティングをどの程度行うかにより、信頼性に大きく影響します。
 - ディレーティングとは信頼性を確保または向上するため、各定格値から負荷を軽減した動作範囲を設定したり、サージやノイズなどについて考慮したりすることです。ディレーティングを行う要素には、一般的に電圧、電流、電力などの電気的ストレス、周囲温度、湿度などの環境ストレス、半導体製品の自己発熱による熱ストレスがあります。これらのストレスは、瞬間的数値、あるいは最大値、最小値についても考慮する必要があります。
 - なおパワーデバイスやパワーデバイス内蔵 IC は、自己発熱が大きく接合部温度のディレーティングの程度が、信頼性を大きく変える要素となるので十分に配慮してください。
- 本書に記載している製品の使用にあたり、本書記載の製品に他の製品・部材を組み合わせる場合、あるいはこれらの製品に物理的、化学的、その他何らかの加工・処理を施す場合には、使用者の責任においてそのリスクを検討の上行ってください。
- 本書記載の製品は耐放射線設計をしておりません。
- 弊社物流網以外での輸送、製品落下などによるトラブルについて、弊社は一切責任を負いません。
- 本書記載の内容を、文書による当社の承諾なしに転記複製を禁じます。